

Foundations of
High-Performance React
Applications

Thomas Hintz

This book is for sale at

http://leanpub.com/foundations-high-performance-react

This version was published on 2021-05-09

This is a Leanpub book. Leanpub empowers authors and

publishers with the Lean Publishing process. Lean

Publishing is the act of publishing an in-progress ebook

using lightweight tools and many iterations to get reader

feedback, pivot until you have the right book and build

traction once you do.

This work is licensed under a Creative Commons

Attribution 4.0 International License

http://leanpub.com/foundations-high-performance-react
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Contents

Preface . 1

Acknowledgments . 3

Introduction . 4

Components of React . 5

Markup in JavaScript: JSX 6

Getting Ready to Render with createElement 7

Render: Putting Elements on the Screen 8

Reconciliation, or How React Diffs 11

Fibers: Splitting up Render 12

Putting it all together . 13

Conclusion . 15

Preface
Welcome to Foundations of High-Performance React Appli-
cations where we build our own simplified version of React.

We’ll use our React to gain an understanding of the real React

and how to build high-performance applications with it.

This book is based on the first chapter of the book High-
Performance React. If you enjoy this book and you want to

learn more practical ways to utilize the foundations we’ll

learn here and get a more detailed blueprint for creating high

performance React applications, then be sure to check out

High-Performance React.

This book is not intended to be an introduction to React or

JavaScript. While it might be useful to beginners, this book

assumes familiarity with both JavaScript and React.

And while this book only specifically addresses React-DOM,

the foundations apply equally to React-Native and other React

implementations because they are all based on the same core

React library and algorithms.

The code in this book is clear and simple so as to best

communicate the algorithms we’ll be exploring. It is not

intended to be used in production, but it is functional. I think

Preface 2

you’ll likely find it useful to follow along by writing the code

yourself. It will help you better understand how it works, and

even more critically, it will allow you to play with it and test

how the algorithms work with your own examples.

Even if you don’t write out the code yourself and, instead,

read through this book more like a novel, I believe the

fundamentals will still stick with you and provide value in

your React programs-to-come.

I’m very excited to take you on this journey with me and,

so, now it’s time to learn what lies at the very foundation of

React.

Acknowledgments
This content is not available in the sample book. The book can

be purchased on Leanpub at http://leanpub.com/foundations-

high-performance-react.

http://leanpub.com/foundations-high-performance-react
http://leanpub.com/foundations-high-performance-react

Introduction
This content is not available in the sample book. The book can

be purchased on Leanpub at http://leanpub.com/foundations-

high-performance-react.

http://leanpub.com/foundations-high-performance-react
http://leanpub.com/foundations-high-performance-react

Components of React
This content is not available in the sample book. The book can

be purchased on Leanpub at http://leanpub.com/foundations-

high-performance-react.

http://leanpub.com/foundations-high-performance-react
http://leanpub.com/foundations-high-performance-react

Markup in JavaScript:
JSX
This content is not available in the sample book. The book can

be purchased on Leanpub at http://leanpub.com/foundations-

high-performance-react.

http://leanpub.com/foundations-high-performance-react
http://leanpub.com/foundations-high-performance-react

Getting Ready to
Render with
createElement
This content is not available in the sample book. The book can

be purchased on Leanpub at http://leanpub.com/foundations-

high-performance-react.

http://leanpub.com/foundations-high-performance-react
http://leanpub.com/foundations-high-performance-react

Render: Putting
Elements on the
Screen
There are now only two major puzzles remaining in our quest

for our own React. The next piece is render. How do we go

from our JSM tree of nodes to actually displaying something

on screen? We do this by exploring the render method.

The signature for our rendermethod should be familiar to you:

function render(element, container)

This is the same signature as that of React itself. We begin by

just focusing on the initial render. In pseudocode it looks like

this:

Render: Putting Elements on the Screen 9

function render(element, container) {
const domElement = createDOMElement(element);
setProps(element, domElement);
renderChildren(element, domElement);
container.appendChild(domElement);

Our DOM element is created first. Then we set the properties,

render the children elements, and finally append the whole

tree to the container.

Now that we have an idea of what to build we’ll work

on expanding the pseudocode until we have our own fully

functional rendermethod by using the same general algorithm

that React uses. In our first pass we’ll focus on the initial

render and ignore reconciliation.

Reconciliation is basically React’s “diffing” algo-

rithm. We’ll be exploring it after we work out the

initial render.

Render: Putting Elements on the Screen 10

function render(element, container) {
const { type, props } = element;

// create the DOM element
const domElement = type === 'TEXT' ?

document.createTextNode(props.nodeValue) :
document.createElement(type);

// set its properties
Object.keys(props)

.filter((key) => key !== 'children')

.forEach((key) => domElement[key] = props[key]);

// render its children
props.children.forEach((child) =>

render(child, domElement));

// add our tree to the DOM!
container.appendChild(domElement);

}

The rendermethod starts by creating the DOM element. Then

we need to set its properties. To do this we first need to filter

out the children property and then we simply loop over the

keys, setting each property directly. Following that, we render

each of the children by looping over them and recursively

calling render on each child with the container set to the

current DOM element (which is each child’s parent).

Now we can go all the way from our JSX-like notation to a

rendered tree in the browser’s DOM! But so far we can only

add things to our tree. To be able to remove and modify the

tree we need one more part: reconciliation.

Reconciliation, or How
React Diffs
This content is not available in the sample book. The book can

be purchased on Leanpub at http://leanpub.com/foundations-

high-performance-react.

http://leanpub.com/foundations-high-performance-react
http://leanpub.com/foundations-high-performance-react

Fibers: Splitting up
Render
This content is not available in the sample book. The book can

be purchased on Leanpub at http://leanpub.com/foundations-

high-performance-react.

http://leanpub.com/foundations-high-performance-react
http://leanpub.com/foundations-high-performance-react

Putting it all together
Now that we’ve explored how React renders your compo-

nents, it’s time to finally create some components and use

them!

const SayNow = ({ dateTime }) => {
return ['h1', {}, [`It is: ${dateTime}`]];

};

const App = () => {
return ['div', { 'className': 'header' },

[SayNow({ dateTime: new Date() }),
['input',
{ 'type': 'submit', 'disabled': 'disabled' },
[]]

]
];

}

render(createElement(App()),
document.getElementById('root'));

We are creating two components that output JSM, as we de-

fined it earlier. We create one component prop for the SayNow

component: dateTime. It gets passed from the App component.

The SayNow component prints out the DateTime passed in to it.

You might notice that we are passing props the same way one

does in the real React, and it just works!

The next step is to call render multiple times.

Putting it all together 14

setInterval(() =>
render(createElement(App()),

document.getElementById('root')),
1000);

If you run the code above you’ll see the DateTime display

being updated every second. And if you watch in your dev

tools, or if you profile the run, you’ll see that the only part of

the DOM that gets updated or replaced is the part that changes

(aside from the DOM props). We now have a working version

of our own React.

This implementation is designed for teaching

purposes and has some known bugs, like always

updating the DOM props, along with other issues.

Fundamentally, it functions the same as React,

but if you want to use it in a more production-like

setting, it would take a lot more development.

Conclusion
This content is not available in the sample book. The book can

be purchased on Leanpub at http://leanpub.com/foundations-

high-performance-react.

http://leanpub.com/foundations-high-performance-react
http://leanpub.com/foundations-high-performance-react

	Table of Contents
	Preface
	Acknowledgments
	Introduction
	Components of React
	Markup in JavaScript: JSX
	Getting Ready to Render with createElement
	Render: Putting Elements on the Screen
	Reconciliation, or How React Diffs
	Fibers: Splitting up Render
	Putting it all together
	Conclusion

